Skip navigation

Research

The primary goal in the Astrobiology of Icy Worlds Investigation is to advance our understanding of the role of ice in the broad context of astrobiology through combined laboratory, numerical, analytical, and field investigations. The Icy Worlds team is pursuing this goal through four major investigations; the habitability, survivability, and detectability of life of icy worlds coupled with "Path to Flight" technology demonstrations.

As the team searches for signatures for life by "following the ice," such questions have emerged as can life emerge and thrive in a cold, lightless world beneath hundreds of kilometers of ice? And if so, do the icy shells hold clues to life in the subsurface environment? These questions are the primary motivation of these science investigations, which are detailed below:

Habitability of Icy Worlds investigates the habitability of liquid water environments in icy worlds, with a focus on what processes may give rise to life, what processes may sustain life, and what processes may deliver that life to the surface.

Survivability of Icy Worlds investigates the survivability of biological compounds under simulated icy world surface conditions, and compare the degradation products to abiotically synthesized compounds resulting from the radiation chemistry on icy worlds.

Detectability of Icy Worlds investigates the detectability of life and biological materials on the surface of icy worlds, with a focus on spectroscopic techniques, and on spectral bands that are not in some way connected to photosynthesis.

Path to Flight, the technology investigation for astrobiology, utilizes instrumentation built with non-NAI funding to carry out the science investigations discussed above. The search for life requires instruments and techniques that can detect biosignatures from orbit and in-situ under harsh conditions. Advancing this capacity is the focus of this technology investigation.

These investigations comprise research projects both in the lab (simulated conditions and models) as well as in the field where the team conducts experiments analyzing natural conditions.